

2006 Air Monitoring Conference Las Vegas, Nevada November 2006 Paul Stenberg

SYSTEM DESIGN Emitter Receiver Analyser Optic cable Grating Rapid Scanning Device Detector HD COMPUTER MODEM

WAVELENGTH REGIONS

THE RAPID SCANNING DEVICE Slit wheel Spectrum Opto trigger **Detector window**

SPECTRAL EVALUATION

The Beer Lambert Law

$$I_1 = I_0^{-c\alpha_1 l}$$

$$\ln (I_2/I_1) = c(\alpha_1 - \alpha_2)1$$

- MOVEABLE
- RESOLUTION
- COATINGS
- MULTIPLE

EU Directives for Benzene

Recommended Concentration Levels:

Today: 10 μg/m³ as annual mean value

In 2010: 5 µg/m³ as annual mean value

Reference Method: Gas chromatograph Equivalent Method: DOAS (only Opsis approved by German TUV)

BENZENE (24 h) (17 Nov. - 17 Dic. 1999)

BP, BELGIUM

CALIBRATION

Optical density

$$C_p \times L_p = C_c \times L_c$$

C_{p= Concentration} in the path

L_{p= Length of the path}

C_{c=} Concentration in the cell

L_{c= Length} of the cell

SUMMARY

- DOAS SIMPLIFIES MULTIPARAMETER MEASUREMENTS
- DOAS TECHNOLOGY HAS EVOLVED OVER THE LAST 15 YEARS
- DOAS OPEN PATH HAS BEEN PROVEN TO CORRELATE WITH TRADITIONAL POINT MEASUREMENTS
- DOAS IS VERY VERSITILE
- OPSIS DOAS CONFORMS TO USEPA CALIBRATION REQUIREMENTS